|
(詳細はMedieval Warm Period and Little Ice Age in various IPCC reports see ''MWP and LIA in IPCC reports'' The temperature record of the past 1,000 years is reconstructed using data from climate proxy records in conjunction with the modern instrumental temperature record which only covers the last 150 years at a global scale. Large scale reconstructions covering part or all of the 1st millennium and 2nd millennium have shown that recent temperatures are exceptional: the Intergovernmental Panel on Climate Change Fourth Assessment Report of 2007 concluded that "Average Northern Hemisphere temperatures during the second half of the 20th century were ''very likely'' higher than during any other 50-year period in the last 500 years and ''likely'' the highest in at least the past 1,300 years." The curve shown in graphs of these reconstructions is widely known as the hockey stick graph because of the sharp increase in temperatures during the last century. As of 2010 this broad pattern was supported by more than two dozen reconstructions, using various statistical methods and combinations of proxy records, with variations in how flat the pre-20th century "shaft" appears. Sparseness of proxy records results in considerable uncertainty for earlier periods.〔.〕 Individual proxy records, such as tree ring widths and densities used in dendroclimatology, are calibrated against the instrumental record for the period of overlap. Networks of such records are used to reconstruct past temperatures for regions: tree ring proxies have been used to reconstruct Northern Hemisphere extratropical temperatures (within the tropics trees do not form rings) but are confined to land areas and are scarce in the Southern Hemisphere which is largely ocean. Wider coverage is provided by multiproxy reconstructions, incorporating proxies such as lake sediments, ice cores and corals which are found in different regions, and using statistical methods to relate these sparser proxies to the greater numbers of tree ring records. The "Composite Plus Scaling" (CPS) method is widely used for large-scale multiproxy reconstructions of hemispheric or global average temperatures, this is complemented by Climate Field Reconstruction (CFR) methods which show how climate patterns have developed over large spatial areas, making the reconstruction useful for investigating natural variability and long term oscillations as well as for comparisons with patterns produced by climate models. During the 1,900 years before the 20th century, it is likely that the next warmest period was from 950 to 1100, with peaks at different times in different regions. This has been called the Medieval Warm Period, and some evidence suggests widespread cooler conditions during a period around the 17th century known as the Little Ice Age. In the hockey stick controversy, contrarians have asserted that the Medieval Warm Period was warmer than at present, and have disputed the data and methods of climate reconstructions. == General techniques and accuracy == By far the best observed period is from 1850 to the present day, with coverage improving over time. Over this period the recent instrumental record, mainly based on direct thermometer readings, has approximately global coverage. It shows a general warming in global temperatures. Before this time various proxies must be used. These proxies are less accurate than direct thermometer measurements, have lower temporal resolution, and have less spatial coverage. Their only advantage is that they enable a longer record to be reconstructed. Since the direct temperature record is more accurate than the proxies (indeed, it is needed to calibrate them) it is used when available: i.e., from 1850 onwards. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Temperature record of the past 1000 years」の詳細全文を読む スポンサード リンク
|